AIMP1 negatively regulates adipogenesis by inhibiting PPARγ.

نویسندگان

  • Jong Hyun Kim
  • Jung Ho Lee
  • Min Chul Park
  • Ina Yoon
  • Kibom Kim
  • Minji Lee
  • Hueng-Sik Choi
  • Jung Min Han
  • Sunghoon Kim
چکیده

Adipogenesis is known to be controlled by the concerted actions of transcription factors and co-regulators. However, little is known about the mechanism of regulation of the transcription factors that control adipogenesis. In addition, the adipogenic roles of translational factors remain unclear. Here, we show that aminoacyl tRNA synthetase-interacting multifunctional protein 1 (AIMP1, also known as p43), an auxiliary factor that is associated with a macromolecular tRNA synthetase complex, negatively regulates adipogenesis through a direct interaction with the DNA-binding domain of peroxisome proliferator-activated receptor γ (PPARγ). We found that AIMP1 expression increases during adipocyte differentiation. Adipogenesis is augmented in AIMP1-deficient cells, as compared with control cells. AIMP1 exhibits high affinity for active PPARγ and interacts with the DNA-binding domain of PPARγ, thereby inhibiting its transcriptional activity. Thus, AIMP1 appears to function as a novel inhibitor of PPARγ that regulates adipocyte differentiation by preventing the transcriptional activation of PPARγ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AIMP1 negatively regulates adipogenesis by inhibiting PPARc

Adipogenesis is known to be controlled by the concerted actions of transcription factors and co-regulators. However, little is known about the mechanism of regulation of the transcription factors that control adipogenesis. In addition, the adipogenic roles of translational factors remain unclear. Here, we show that aminoacyl tRNA synthetaseinteracting multifunctional protein 1 (AIMP1, also know...

متن کامل

Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis.

PPARγ promotes adipogenesis while Wnt proteins inhibit adipogenesis. However, the mechanisms that control expression of these positive and negative master regulators of adipogenesis remain incompletely understood. By genome-wide histone methylation profiling in preadipocytes, we find that among gene loci encoding adipogenesis regulators, histone methyltransferase (HMT) G9a-mediated repressive e...

متن کامل

Leptin Antagonizes Peroxisome Proliferator-Activated Receptor-γ Signaling in Growth Plate Chondrocytes

Leptin is an obesity-associated cytokine-like hormone encoded by the ob gene. Recent studies reveal that leptin promotes proliferation and differentiation of chondrocytes, suggesting a peripheral role of leptin in regulating growth plate function. Peroxisome proliferator-activated receptor-γ (PPARγ) is a transcriptional regulator of adipogenesis. Locally, PPARγ negatively regulates chondrogenic...

متن کامل

Histone H3K9 Demethylase JMJD2B Activates Adipogenesis by Regulating H3K9 Methylation on PPARγ and C/EBPα during Adipogenesis

Previous studies have shown that tri- or di-methylation of histone H3 at lysine 9 (H3K9me3/me2) on the promoter of the peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) contribute to the repression of PPARγ and C/EBPα and inhibition of adipogenesis in 3T3-L1 preadipocytes. The balance of histone methylation is regulated by histone methyltransfera...

متن کامل

S-nitrosoglutathione reductase-dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis.

Bone marrow-derived mesenchymal stem cells (MSCs) are a common precursor of both adipocytes and osteoblasts. While it is appreciated that PPARγ regulates the balance between adipogenesis and osteogenesis, the roles of additional regulators of this process remain controversial. Here, we show that MSCs isolated from mice lacking S-nitrosoglutathione reductase, a denitrosylase that regulates prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 127 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2014